CHAPTER 6: Hydraulic Reservoirs

Fluid power reservoirs

Fluid power systems require air or a liquid fluid to transmit energy. Pneumatic systems use the atmosphere -- the air we breathe -- as the source or reservoir for their fluid. A compressor takes in atmospheric air at 14.7 psia, compresses it to between 90 and 125 psig, and then stores it in a receiver tank. A receiver tank is similar to a hydraulic system’s accumulator. A receiver tank, Figure 6-1, stores energy for future use similar to a hydraulic accumulator. This is possible because air is a gas and thus is compressible. A receiver tank is a pressure vessel and is constructed to pressure vessel standards. At the end of the work cycle the air is simply returned to the atmosphere.

Hydraulic reservoirs


Figure 6-1. Simple pneumatic power unit.
Hydraulic systems, on the other hand, need a finite amount of liquid fluid that must be stored and reused continually as the circuit works. Therefore, part of any hydraulic circuit is a storage reservoir or tank. This tank may be part of the machine framework or a separate stand-alone unit. In either case, reservoir design and implementation is very important. The efficiency of a well-designed hydraulic circuit can be greatly reduced by poor tank design. A hydraulic reservoir does much more than just provide a place to put fluid. A well-designed reservoir also dissipates heat, allows time for contamination to drop out of the fluid, and allows air bubbles to come to the surface and dissipate. It may give a positive pressure to the pump inlet and makes a convenient mounting place for the pump and its motor, and valves.

Some standard reservoir layouts

Pump on top. Figure 6-2 shows this common reservoir/pump layout -- used by many suppliers. The flat top surface of a standard reservoir makes a perfect place to mount the pump and motor.

Figure 6-2. Pump and motor mounted on top of tank.
The main disadvantage to this configuration is that the pump must create enough vacuum to raise and accelerate the fluid into the pump inlet. For most pumps, this is not a big problem, but it is not the best situation for any of them. Axial or in-line piston pump life can be adversely affected by medium to high vacuum at its inlet when using this layout. The piping in this configuration must be sealed, should be as short as possible, and have few or no bends.
Pump alongside tank. Figure 6-3 shows another design that is satisfactory for any type pump. (Many suppliers prefer this layout.) This arrangement is sometime called a flooded suction, because the pump inlet always is filled with fluid.

» Read More...

CHAPTER 3: Pipe, Tube, and Hose

Poor plumbing practices can permanently cripple a fluid power circuit even if it was designed with the best engineering practices and assembled with the most up-to-date components. Undersized lines, elbows instead of bends, incorrect component placement, and long piping runs are a few of the items that strangle fluid flow.
Other problems, such as using tapered pipe threads or lines with thin walls, can make a circuit a maintenance nightmare that requires daily attention. Fortunately, there are numerous publications that assist in specifying correct line size and conductor thickness to give low pressure drop and safe working-pressure limits.
Because pneumatic circuits are less complicated and operate at lower pressures, they are not as vulnerable to plumbing problems. One very important aspect that often is overlooked is the length and size of lines between the valves and actuators. Piping between the valve and actuator should be as short as possible and of the minimum diameter to carry the required flow. The reason for this is that all the air in the pipes between the actuator and valve is wasted every cycle. These runs must be filled to make the device move but the air it takes to fill them does no work. During each cycle, air in the actuator lines exhausts to atmosphere without helping cycle time or force. For this reason, always mount the valve close to the actuator ports.
Another aspect of plumbing a pneumatic system is the in-plant pipe installation procedure. To get the required amount of compressed air to the point of usage requires some planning -- or the site may be starved at times.
Fig. 3-1. Pipe size selection chart (in feet) for plant-air systems


Pipe materials and size: Air systems are normally plumbed with Schedule 40 black iron pipe. (Galvanized pipe is not recommended because some galvanizing material may flake off and get into moving parts.) Several other available plumbing materials could be used for air piping because pressure is relatively low. Some mechanics recommend plastic pipe, but be aware a few synthetic compressor lubricants attack plastic and cause it to lose strength. This type of damage weakens the plastic until it can burst, sending shards of plastic flying everywhere in the plant. Never use any piping material not specifically designated by code.

» Read More...

Recent Post