Fluid power reservoirs
Fluid power systems require air or a liquid fluid to transmit energy. Pneumatic systems use the atmosphere -- the air we breathe -- as the source or reservoir for their fluid. A compressor takes in atmospheric air at 14.7 psia, compresses it to between 90 and 125 psig, and then stores it in a receiver tank. A receiver tank is similar to a hydraulic system’s accumulator. A receiver tank, Figure 6-1, stores energy for future use similar to a hydraulic accumulator. This is possible because air is a gas and thus is compressible. A receiver tank is a pressure vessel and is constructed to pressure vessel standards. At the end of the work cycle the air is simply returned to the atmosphere.
Hydraulic reservoirs
Figure 6-1. Simple pneumatic power unit.
|
Hydraulic systems, on the other hand, need a finite amount of liquid fluid that must be stored and reused continually as the circuit works. Therefore, part of any hydraulic circuit is a storage reservoir or tank. This tank may be part of the machine framework or a separate stand-alone unit. In either case, reservoir design and implementation is very important. The efficiency of a well-designed hydraulic circuit can be greatly reduced by poor tank design. A hydraulic reservoir does much more than just provide a place to put fluid. A well-designed reservoir also dissipates heat, allows time for contamination to drop out of the fluid, and allows air bubbles to come to the surface and dissipate. It may give a positive pressure to the pump inlet and makes a convenient mounting place for the pump and its motor, and valves.
Some standard reservoir layouts
Pump on top. Figure 6-2 shows this common reservoir/pump layout -- used by many suppliers. The flat top surface of a standard reservoir makes a perfect place to mount the pump and motor.
Figure 6-2. Pump and motor mounted on top of tank.
|
The main disadvantage to this configuration is that the pump must create enough vacuum to raise and accelerate the fluid into the pump inlet. For most pumps, this is not a big problem, but it is not the best situation for any of them. Axial or in-line piston pump life can be adversely affected by medium to high vacuum at its inlet when using this layout. The piping in this configuration must be sealed, should be as short as possible, and have few or no bends.
Pump alongside tank. Figure 6-3 shows another design that is satisfactory for any type pump. (Many suppliers prefer this layout.) This arrangement is sometime called a flooded suction, because the pump inlet always is filled with fluid.
» Read More...